1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
;
; Atmel Mega8 based ODIN chipset
;
; Copyright (c) 2009 Michael Buesch <mb@bu3sch.de>
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; as published by the Free Software Foundation; either version 2
; of the License, or (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
.listmac
.include "m8def.inc"
.def zero = r0 ; Always zero'd (constant value)
.def one = r1 ; Always one (constant value)
.def two = r2 ; Always two (constant value)
.def three = r3 ; Always three (constant value)
.def sigin = r4 ; Input signal
.def t0 = r16 ; Temp reg 0
.def t1 = r17 ; Temp reg 1
.def t2 = r18 ; Temp reg 2
.def t3 = r19 ; Temp reg 3
.def steptab_start = r22 ; Step table start marker (constant value)
.def steptab_center = r23 ; Step table center marker (constant value)
.def steptab_end = r24 ; Step table end marker (constant value)
.def directions = r25 ; LMD dir pin states in bit0/1
.equ DAC_PORT = PORTD
.equ DIROUT_PORT = PORTB
.equ DIROUT_LMD1_BIT = 0
.equ DIROUT_LMD2_BIT = 1
.equ IN_PIN = PINC
.equ IN_CLK_BIT = 0
.equ IN_DIR_BIT = 1
.dseg
; Allocate enough space for 60 microsteps.
; Align to 0x100 so that the high byte of the pointer will
; never change.
.org 0x100
MEM_STEPTABLE: .byte (60 * 2)
; Direction pin helper macros.
; The two direction pins can be seen as a two bit gray code number.
; So we convert to binary, increment/decrement and convert back to gray.
; We convert to binary/gray by flipping the lower bit, if the upper bit is set.
;
; The gray code sequence is
; gray | binary
; 00 | 00
; 01 | 01
; 11 | 10
; 10 | 11
;
.macro dir_increment
sbrc directions, 1 ; Convert to binary number
eor directions, one ;
inc directions ; Increment ...
andi directions, 3 ; ... and mask the number.
sbrc directions, 1 ; Convert to gray code
eor directions, one ;
.endm
.macro dir_decrement
sbrc directions, 1 ; Convert to binary number
eor directions, one ;
dec directions ; Decrement ...
andi directions, 3 ; ... and mask the number.
sbrc directions, 1 ; Convert to gray code
eor directions, one ;
.endm
; A big delay used for debouncing the switches on the debug-board.
.macro debug_delay
.ifdef DEBUG
push t0
push t1
ldi t0, 0xFF
l1:
ldi t1, 0xFF
l2:
dec t1
brne l2
dec t0
brne l1
pop t1
pop t0
.endif
.endm
.cseg
.org 0x000
rjmp reset
.org 0x026
;*******************************************
;*** ENTRY POINT ***
;*******************************************
reset:
cli
clr zero
clr one
inc one
mov two, one
inc two
mov three, two
inc three
; Init the stackpointer
ldi t0, low(RAMEND)
out SPL, t0
ldi t0, high(RAMEND)
out SPH, t0
; Setup the port configuration
ldi t0, 0xFF ; B=out
out DDRB, t0
ldi t0, 0x00
out PORTB, t0
ldi t0, 0x00 ; C=in
out DDRC, t0
ldi t0, 0xFF ; C=pullups
out PORTC, t0
ldi t0, 0xFF ; D=out
out DDRD, t0
ldi t0, 0x00
out PORTD, t0
; Copy the step table to RAM
ldi t0, (NR_STEPS * 2)
ldi ZL, low(steptable * 2)
ldi ZH, high(steptable * 2)
ldi XL, low(MEM_STEPTABLE)
ldi XH, high(MEM_STEPTABLE)
copy: lpm t1, Z+
st X+, t1
dec t0
brne copy
; Init the status registers
ldi XL, low(MEM_STEPTABLE) ; X is the table pointer
ldi XH, high(MEM_STEPTABLE) ; High byte is constant
ldi directions, 0
ldi steptab_start, low(MEM_STEPTABLE)
ldi steptab_center, low(MEM_STEPTABLE) + NR_STEPS
ldi steptab_end, low(MEM_STEPTABLE) + NR_STEPS * 2 - 1
; Initially set the outputs and enter the mainloop
ld t0, X
out DIROUT_PORT, directions
out DAC_PORT, t0
rjmp mainloop
;*******************************************
;*** MAINLOOP ***
;*******************************************
mainloop:
sbic IN_PIN, IN_CLK_BIT ; Wait for falling edge
rjmp mainloop
debug_delay
wait_rising:
in sigin, IN_PIN ; Get the input signals
sbrs sigin, IN_CLK_BIT ; Wait for rising edge
rjmp wait_rising
; Test the direction bit to decide whether we move forward or backward
sbrs sigin, IN_DIR_BIT
rjmp backward
; *** Forward move ***
cp XL, steptab_start ; If we're at the table start ...
breq fwd1
cpse XL, steptab_center ; ... or at the table center ...
rjmp fwd2
fwd1: dir_increment ; ... increment the LMD direction state
fwd2: cp XL, steptab_end ; Increment the table pointer
breq fwd3
inc XL
rjmp fwd4
fwd3: mov XL, steptab_start
fwd4: out DIROUT_PORT, directions ; Commit LMD dir state, if not done, yet
ld t0, X
out DAC_PORT, t0 ; Commit the LMD DAC state
rjmp mainloop
backward:
; *** Backward move ***
out DIROUT_PORT, directions ; Commit LMD dir state, if not done, yet
cp XL, steptab_start ; Decrement the table pointer
breq bwd1
dec XL
rjmp bwd2
bwd1: mov XL, steptab_end
bwd2: cp XL, steptab_start ; If we're at the table start ...
breq bwd3
cpse XL, steptab_center ; ... or at the table center ...
rjmp bwd4
bwd3: dir_decrement ; ... decrement the LMD direction state
bwd4: ld t0, X
out DAC_PORT, t0 ; Commit the LMD DAC state
rjmp mainloop
.include "tables.S"
|